e New	Open Save		P nse Manager	Help											
Input	Project Info		Soil Lay	ers				 Image: Constraint of the second second	×	SP (B)	T Blow Counts		Correctio (BH1)	on Factors	
rrelations	Project Name: Sample pr Job No.: 123456 Location: Sample Io		Thickn (m)	ess Unit We (kN/m3	ight s	oil Type	OCR	Uniformity (Cu)	Del	0				1.5	2
	Client: Sample Cl		3.00	16.50	Fir	ne 🔻	1.00	1.00	x		-			1	
	Boreholes		2.60	18.70	Fir	ne 🔻	1.00	1.00	×	1					-1
	Borehole Name	- 1	1.60	17.50	Fir	ne 🔻	0.50	0.50	×		4 4	1		1	
	Borehole Name	Del	2.00	21.00	Co	oarse 🔻	1.00	1.00	×	2	1 m				2
	BH1	×	SPT blo	w counts			é) 🖄 🏩	×		IT			Ŧ	
	BH2 Select Borebol	×	Depth (m)	SPT blow counts (N)	с	Cn	N60	(N1)60	Del	3-				ł	-3
	BH1	-	• 0.30	34	0.65	1.70	22	37	×	24	112			ł.	
	Allowable Bearing C	anacity	0.61	12	0.65	1.70	8	14	x	Depth (m)	\rightarrow			t	-4
	B(m) = L(m): 1.5	apacity	0.91	18	0.65	1.70	12	20	x	epti					
	Settlement (mm): 25		1.22	26	0.65	1.70	17	29	x	□ S-	11		- 1		-5
	FS: 3		1.52	23	0.70	1.70	16	27	x		\mathbf{k}				
	SPT Correction	5	1.83	25	0.70	1.70	17	29	x	6		- I I	I		-6
	C Energy (%): 60		2.12	39	0.70	1.70	27	46					I		ľ
	BH Diameter: 150 m		- 2.13	22	0.70	1.67	15	25	×	7	11				
	Sampler: With L Rod length above boreho		* 2.44		0.74	1.64	16	26	×		4				-7
	1.5	e (m):	2.74	21	0.74	1.60	10	20	×	8			+		
	Overburden Correction:		3.05	17	0.74	1.60	13	21	×	ů i			1		-8
	Tokimatsu and Yoshimi (1	983)	- 3.35	18					×				1		
	Other		3.66	20	0.74	1.53	15	23	×		SPT N		-		
		Apply Water Level Correction		19	0.74	1.49	14	21	×		SPT N60	C:	=Ce.Cb.0	Cs.Cr	
	Groundwater Level (m): 1.5		4.27	25	0.74	1.45	19	28	×		SPT N160	Ci	1		
			4.80	16	0.83	1.40	13	18	×		Plot				
	Please click on analyze 'bo after editing input		5.00	22	0.83	1.37	18	25	×	12	Plot Charts	🧹 A	naly	ze BH	11
	Julian		5.60	16	0.83	1.32	13	17	×	-	Charts	~	-		

DartisSPT

User guide 2022

Table of contents

1. About	3
2. Geting Started	4
3. Unit System	6
4. Formulas	7
4.1. Coarse and Fine grained soils	8
4.1.1. Overburden correction factor (Cn)	9
4.1.2. Allowable Bearing Capacity	
4.2. Coarse grained soils	
4.2.1. Relative Density (Dr)	12
4.2.2. Friction Angle (Phi)	
4.2.3. Elastic Modulus (Es)	14
4.2.4. Shear Wave Velocity (Vs)	
4.2.5. Shear Modulus (Gmax)	16
4.3. Fine grained soils	17
4.3.1. Undrained Shear Strength (su)	
4.3.2. Unconfined Compressive Strength (qu)	19
4.3.3. Pressuremeter Modulus (Ep)	
4.3.4. Elastic Modulus (Vs)	
4.3.5. Shear Modulus (Gmax)	
5. Content	
5.1. Data Entry	24
5.2. Toolbar	27
5.3. Correlated results	
5.4. Correlation with depth	
5.5. Report	
System Requirements	

1. About

DartisSPT is a computer program for interpretation of Standard Penetration Test (SPT) and correlating blow counts (N) to soil properties based on more than 200 correlations. It provides several reporting and additional features.

Although all efforts have been undertaken to ensure that this software is of the highest possible quality and that the results obtained are correct, the authors do not warrant the functions contained in the program will meet your requirements or that the operation of the program will be uninterrupted or error-free. The authors are not responsible and assume no liability for any results or any use made thereof, nor for any damages or litigation that may result from the use of the software for any purpose. All results to be verified independently by user.

Purchase full version Program's web page Terms & Conditions Bug report / Feature request

2. Geting Started

When starting a new analysis with DartisSPT, take the following steps:

1- Create a new project: by clicking on 'New' button, a dialogue will open. Choose the location where you want the project to be saved. Files are saved with *.DSpt extension and the complete file path is shown at the bottom of the page.

2- Enter project info: Type the name of the borehole and add it to the project. Select the desired borehole from the combo box. Enter input data including allowable bearing capacity factors, correction factors and ground water level for that borehole.

Dartis Spt			<mark>P</mark> Manager	Help						- 0
Input	Project Info		Soil Layer	· ·				A. m		SPT Blow Counts Correction Factors
relations	Project Name: Sample project		Thicknes					Uniformity	~	(BH1) (BH1) 0 20 40 5 0.5 1 1.5 2
	Job No.: 123456 Location: Sample location		(m)	(kN/m3)	gnt S	ioil Type	OCR	(Cu)	Del	
	Client: Sample Client		3.00	16.50	Fi	ne 🔻	1.00	1.00	×	
	Boreholes		2.60	18.70	Co	oarse 🔻	1.00	1.00	×	
	Borehole Name	+	1.60	17.50	Fi	ne 🔻	0.50 (0.50	×	
	Borehole Name	Del	2.00	21.00	Fi	ne 🔻	1.00	1.00	×	2
	BH1	×	SPT blow	counts			÷	1 🖄 💼	×	
	BH2	×	Depth	SPT blow						3
	Select Borehole		(m)	counts (N)	С	Cn	N60) (N1)60	Del	
	BH1	*	0.30	34	0.75	1.70	26	44	×	Ê4
	Allowable Bearing Capacit	ty	0.61	12	0.75	1.70	9	15	×	Cu di
	B(m) = L(m): 1.5 Settlement (mm): 25		0.91	18	0.75	1.70	14	24	×	
	FS: 3		1.22	26	0.75	1.70	20	34	×	
	SPT Corrections		1.52		0.75	1.70	17	29	×	6
	Energy (%): 60				0.75	1.70	19	32	×	
	BH Diameter: 65-115 mm	-		55	0.75	1.70	29	49	×	7
	Sampler: Without Line				0.75	1.70	16	27	x	
	Rod length above borehole (m): 0.5			- 1	0.80	1.68	17	29	x	
	Overburden Correction:		3.05		0.80	1.62	14	23	x	
	Bazaraa (1967)	*			0.80	1.55	14	22	x	
	Other				0.85	1.48	17	25	x	9 SPT N
	 Apply Water Level Correctio Groundwater Level (m): 	n		1.5	0.85	1.42	16 21	23 29	x	SPT N60 C=Ce.Cb.Cs.Cr
	1.5				0.85	1.37	14	18	×	SPT N160 Cn
	Please click on analyze 'borehole	e'			0.85	1.20	14	24	x	Plot A L Plu
	after editing input		5.00 5.60		0.85	1.17	15	18	×	Charts Analyze BH1
			3.00	10	0.55	1.17	15	10	×	

3- Enter subsurface soil layers and SPT blow counts in the corresponding tables, as shown below. Notice that you can update plots on the right -hand side of the page by clicking on 'Plot Charts'. When data entry is over, click on 'Analyze borehole' button. Then you can go to 'Correlations' tab and choose the soil parameter to correlate, at the depth at which correlations are needed.

w	Open Sav			<mark>/</mark> Manager	Help							
nput		oject Info		Soil Laye	rs				ê 🗈	×	SPT Blow Counts Correction Fa	ctors
elations	Project Name:	Sample project									(BH1) (BH1) 0 20 40 5 0.5 1 1.5	2
	Job No.: Location:	123456 Sample location		(m)	ss Unit We (kN/m3		Soil Type	OCR	Uniformity (Cu)	Del	0	
	Client:	Sample Ocation	<u> </u>	3.00	16.50	F	ine 🔻	1.00	1.00	×		I
		oreholes		2.60	18.70		loarse 🔻	1.00	1.00	×	- 1	-
	Borehole Nam			1.60	17.50				0.50	x	- 272 1	t
				2.00	21.00				1.00	x	2	Ļ
	BH1	le Name	Del					<u></u>				•
	BH2			SPT blow	counts			•	1 🖄 🖄	×		!
		ct Borehole	×	Depth (m)	SPT blow counts (N)	С	Cn	N6	0 (N1)60	Del		
	BH1		*	0.30	34	0.75	1.70	26	44	x		
	Allowable Bearing Capacity		ity	0.61	12	0.75	1.70	9	15	×	Peptiti (u)	
	B(m) = L(m): 1.5 Settlement (mm): 25 FS: 3		0.91	18	0.75	1.70	14	24	×	e e e		
			1.22	26	0.75	1.70	20	34	×			
				1.52	23	0.75	1.70	17	29	×		
	SPI	Corrections 60		1.83	25	0.75	1.70	19	32	x		
		er: 65-115 mm		2.13	39	0.75	1.70	29	49	×		
	Sampler:	Without Lin		2.44	22	0.75	1.70	16	27	×	- 7- ••	
		ove borehole (m):	2.74	21	0.80	1.68	17	29	×		
	0.5			3.05	17	0.80	1.62	14	23	×	8	
	Overburden Co Bazaraa (1967)		-	3.35	18	0.80	1.55	14	22	×		
		Other		3.66	20	0.85	1.48	17	25	×	a	
	Apply Wat	otner er Level Correcti	on	3.96	19	0.85	1.42	16	23	×	SPT N	
	Groundwater L			4.27	25	0.85	1.37	21	29	x	SPT N60 ■ C=Ce.Cb.Cs.0 ■ SPT N160 ■ Cn	r
	1.5			4.80	16	0.85	1.28	14	18	x		
				5.00	22	0.85	1.25	19	24	x	Plot 🔗 Analyze	вЦ
				5.60	16	0.95	1.17	15	18	x	Charts Maiyze	חט

Exporting tables to Excel Simply click on 'Save as Excel' button above each table or right click on table's header and choose 'Save as Excel' option.

3. Unit System This version of Dartis SPT supports the following unit system: •Metric units (kg, m, cm)

4. Formulas

SPT correlations are typically derived based on case studies or field tests in a specific soil types. As a result, most of the SPT correlations are only valid for one or two soil types. In Dartis SPT database of correlations, some correlations are applicable for <u>Coarse-Grained</u> soils, some correlations are applicable for <u>Fine-Grained</u> soils and some correlations are applicable for both <u>Fine-Grained</u> and <u>Coarse-Grained</u> soils. Dartis SPT automatically filters available correlations based on soil grain size (e.g Coarse / Fine / Coarse and Fine).

4.1. Coarse and Fine grained soils

Includes:

- · <u>Overburden correction factor (Cn)</u>
- <u>Allowable Bearing Capacity</u>

4.1.1. Overburden correction factor (Cn)

Reference	Note	Formula
Gibbs & Holtz (1959)	Unit of effective stress psi	$Cn = \frac{50}{10 + \sigma_{V0}'}$
Bazaraa (1967)	Unit of effective stress in ksf	$(\sigma'_{\psi 0} \le 1.5) \Rightarrow Cn = (\frac{4}{1 + 2\sigma'_{\psi 0}}), (\sigma'_{\psi 0} \ge 1.5) \Rightarrow Cn = (\frac{4}{3.25 \pm 0.5\sigma'_{\psi 0}})$
Peck et al. (1974)	Unit of effective stress in kg/cm2	Rectangular Snip $Ch = 0.7710g_{10} \left(\overline{\sigma'_{V0}} \right)$
Seed (1976)	Unit of effective stress in kg/cm2	$Cn = 1 - 1.25 log_{10}(\sigma'_{100})$
Tokimatsu &Yoshimi (1983)	Unit of effective stress in kg/cm2	$Cn = \frac{1.7}{(0.7 + \sigma'_{V0})}$
Liao & Whitman (1986)	Unit of effective stress in kg/cm2	$Cn = \left(\frac{1}{\sigma'_{V0}}\right)^{0.5}$
Skempton (1986)	Unit of effective stress in kg/cm2	$Cn = \left(\frac{2}{1 + \sigma'_{V0}}\right)(NCMediumLooseFineSands)$
Skempton (1986)	Unit of effective stress in kg/cm2	$Cn = \left(\frac{3}{2 + \sigma'_{VD}}\right)(NCDenseCoarseSand)$
Skempton (1986)	Unit of effective stress in kg/cm2	$Cn = \left(\frac{1.7}{0.7 + \sigma'_{V0}}\right)(OCFineSands)$

Results are adjusted: 0.4<Cn<1.7

4.1.2. Allowable Bearing Capacity Based on shear failure criteria

Reference	Note	Formula
Teng (1969)	Df(m) = Depth of footing (at spt test depth) FS = Factor of safety (defined by user)	$Qa(kPa) = 0.1570464(2N^2BR_w + 6(100 + N^2)D_f R'_w)/FS$ $Dw \le Df: R'_w = 0.5, R_w = 1 - \frac{Df - Dw}{2Df}$ $Dw > Df and Dw < (Df + B): R_w = 1, R'_w = 0.5 + \frac{Dw - Df}{2B}$ $Dw >= (Df + B): R'_w = R_w = 1$
Meyerhof Method	N = Average uncorrected spt blow count to 1.5B depth below footing B(m) = Footing width (<i>defined by user</i>) Df(m) = Depth of footing (<i>at spt test depth</i>) FS = Factor of safety (<i>defined by user</i>) Dw(m) = Depth of ground water level (<i>defined by user</i>)	$\begin{split} & Qa(kPa) = 314.0928(NB/10(C_{w1} + C_{w2}D_{T}/B))/PS \\ & Dw <= Df(C_{w1} = 0.5, C_{w2} = 1, -\frac{Df - Dw}{2Df} \\ & Dw > Df and Dw < (Df + 1.5B); C_{w2} = 1, C_{w4} = 0.5 + \frac{Dw - Df}{3B} \\ & Dw >= (Df + 1.5B); C_{w3} = C_{w2} = 1 \end{split}$
General Terzaghi Formula	$\overline{q} =$ effective stress at foundation level (kPa) $\gamma =$ soil unit weight at foundation level (kN/m3) B(m) = Footing width (defined by user) FS = Factor of safety (defined by user) N1(60) = corrected spt blow count at foundation level	$Qa(kPa) = (\overline{q}N_q + 0.5B\gamma N_y)/FS$ Bowels(1986) $\rightarrow Nq = e^{\pi \tan \varphi} \cdot \tan^2(45 + \varphi/2)$ Hansen(1970) $\rightarrow N\gamma = 1.5(Nq - 1) \tan \varphi$ Hatanaka(1996) $\rightarrow \varphi = 3.5\sqrt{N_160} + 22.3$

Based on allowable settlement

Reference	Note	Formula
Terzaghi and Peck (1948)	N = Average uncorrected spt blow count to 1B depth below footing	$(B <= 1.22) \Rightarrow Qa(kPa) = 0.4713 \frac{NS_c}{C_w C_d}, (B > 1.22) \Rightarrow Qa(kPa) = 0.3142 \frac{NS_c}{C_w C_d} \left(\frac{3.28B + 1}{3.28B}\right)^2$
	B(m) = Footing width (defined by user)	surface footing:
	Se(mm) = Allowable settlement (defined by user)	$Cd = 1, 1 \le Cw = 2 - \frac{Dw}{R} \le 2$
	Cw = Water depth factor	$cu = 1, 1 \leq cw = 2 - \frac{1}{B} \leq 2$
	Cd= Footing depth factor	not surface footing:
	Dw(m) = Depth of ground water level (defined by user)	$Dw \le Df: 1 \le Cw = 2 - 0.5 \frac{Df}{R} \le 2$
	Df(m) = Depth of footing (at spt test depth)	Dw > Df; Cw = 1
		$0.75 \le Cd = 1 - 0.25 \frac{Df}{B} \le 1$
Modified Meyerhof (1965)	N = Average uncorrected spt blow count to 1B depth below	$(B \le 1.22) \Rightarrow Qa(kPa) = 0.9426NS_{c}C_{c}(B > 1.22) \Rightarrow Qa(kPa) = 0.6283NS_{c}C_{c}\left(\frac{3.28B + 1}{2.2027}\right)^{2}$
	footing	· · · · · · · · · · · · · · · · · · ·
	B(m) = Footing width (defined by user)	$Cd = 1 + 0.33 \frac{Df}{R} \le 1.33$
	Se(mm) = Allowable settlement (defined by user)	D
	Cd= Footing depth factor	
	Df(m) = Depth of footing (at spt test depth)	/ m.1.2 × 1/0.87
Anagnotopoulos et al. (1991)N = Average uncorrected spt blow count to 1B depth below	$Qa(kPa) = \left(\frac{SN^{1.2}}{2.37R^{0.7}}\right)^{1/0.87}$
	-	$(2.37B^{0.7})$
	B(m) = Footing width (defined by user) S(mm) = Allowable settlement (defined by user)	
Burland and Burbidge (1985)	$N = Average corrected spt blow count to 1.4*Br*(B/Br)^0.75$	SN ¹⁴
banana ana barbiage (1965	depth below footing	$Qa(kPa) = \frac{5N^{-1}}{1.706B^{0.7}}$
	Br = Refrence footing width = 0.3m	1000
	B(m) = Footing width (defined by user)	
	S(mm) = Allowable settlement (defined by user)	

4.2. Coarse grained soils Includes:

- <u>Relative Density (Dr)</u>
 <u>Friction Angle (Phi)</u>
 <u>Elastic Modulus (Es)</u>
 <u>Shear Wave Velocity (Vs)</u>
 <u>Shear Modulus (Gmax)</u>

4.2.1. Relative Density (Dr)

		Results are adjusted: 0 <dr<100< th=""></dr<100<>
Reference	Note	Formula
Marcuson & Beiganousky (1977a)	Fine sand	$Dr = 8.6 + 0.83 ((N + 10.4 - 3.20CR - 0.24\sigma'_{V0})/0.0045)^{0.5}$
	effective stress in psi	
Marcuson & Beiganousky (1977b)	Coarse sand	$Dr = 12.2 + 0.75(222N + 2311 - 7110CR - 53\sigma'_{V0} - 50Cu^2)^{0.5}$
	effective stress in psi	
Marcuson (1978)	NC	$Dr = 11.7 + 0.76(222N + 1600 - 53\sigma'_{V0} - 50Cu^2)^{0.5}$
	effective stress in psi	
Borowczyk & Frankowski (1981)		$Dr = 100(0.118 \pm 0.44 \log N)$
Borowczyk & Frankowski (1981)	Effective stress in tons/m2	$Dr = 100 \frac{(N)^{0.5}}{4.188 + 0.639 (\sigma'_{V0})^{0.606}}$
		$DT = 100 \frac{1}{4.188 + 0.639 (\sigma'_{V0})^{0.606}}$
Tokimatsu & Yoshimi (1983)	Clean sands	$Dr = 16(N_{\pm})^{0.5}, Cn = \frac{1.7}{0.7 + \sigma'_{\pm 0}}$
	Effective stress in kg/cm2	$\sigma_{1} = 10(\sigma_{1}) - 100 = 0.7 + \sigma_{10}^{\prime}$
Skempton (1986)	Dr > 35	$Dr = 100((N_1)60/60)^{0.5}$
Skempton (1986)	0.5< Effective stress <1.5 kg/cm2, 40 <dr<90< td=""><td>and the second second</td></dr<90<>	and the second
Yoshida et al. (1988)	Fine Sand	$Dr = 22(N)^{0.57} * (\sigma'_{V0})^{-0.14}$
	Effective stress in kPa	
Yoshida et al. (1988)	Gravel Content 25%	$Dr = 18(N)^{0.57} * (\sigma'_{100})^{-0.14}$
	Effective stress in kPa	
Yoshida et al. (1988)	Gravel Content 50%	$Dr = 25(N)^{0.44} * (\sigma'_{V0})^{-0.13}$
	Effective stress in kPa	
Yoshida et al. (1988)	All soils	$Dr = 25(N)^{0.46} (\sigma'_{\rm FB})^{-0.12}$
	Effective stress in kPa	
Kulhawy & Mayne (1990)	Normally consolidated, unaged sands	$Dr = 100((N_1)60/60)^{0.5}$
Hatanaka & Feng (2006)	N1 = N(98/σ')0.5 ,σ' in kPa	$0 \le N1 \le 25 \Rightarrow Dr = 1.55N1 + 40.25 < N1 < 50 \Rightarrow Dr = 0.84N1 + 57.8$

4.2.2. Friction Angle (Phi)

		Results are adjusted: 0 <phi<45< th=""></phi<45<>
Reference	Note	Formula
Meyerhof (1956)		$\phi' = (10N)/35 + 27^{\circ}$
Kishida (1967)		$\phi' = (20N)^{0.5} + 27^{*}$
Muromachi et al. (1974)		$\phi' = 3.5(N)^{0.5} + 20^{\circ}$
Muromachi et al. (1974)	Effective stress in MN/m2	$\phi' = (N/\sigma'_{V0})^{0.3} + 26.9'$
Shioi & Fukui (1982)		$\phi' = (15N)^{0.5} + 15^{\circ}$
Kulhawy & Mayne (1990)		$\phi' = (15.4(N_1)_{60})^{0.3} - 20'$
Bergado et al. (1993)		$\phi' = (12N)^{0.5} + 23.7^{\circ}$
Hatanaka & Uchida (1996)		$\phi' = 3.5((N_1)_{60})^{3.3} - 22.3^{\circ}$
Duncan (2004)	Gravel, Cu>4 Dr based on Kulhawy & Mayne(1990) Effective stress in kPa	$\phi' = 44 + (10Dr)/100 - (7 + 2Dr/100)*Log(\sigma'_{V0}/100)$
Duncan (2004)	Sand, Cu<6 Dr based on Kulhawy & Mayne(1990) Effective stress in kPa	
Duncan (2004)	Sand, Cu>6 Dr based on Kulhawy & Mayne(1990) Effective stress in kPa	$\phi' = 39 + (10Dr)/100 - (3 + 2Dr/100)*Log(\sigma'_{V0}/100)$
Hettiarachchi & Brown (2009)	Loose sand Effective stress in kPa	$\phi' = 0.383 tan^{-1} ((0.2N60)/(\sigma'_{Y0}/100) - 0.68)^{*} 180/\pi$
Hettiarachchi & Brown (2009)	Dense sand Effective stress in kPa	$\phi' = 0.383 \tan^{-1}((0.2N60)/((0.5\sigma'_{V0})/100) - 0.68^{*}0.25)^{*}180/$
Schmertmann (1975)	Effective stress in kPa	$\phi' = tan^{-1} (N_{60} / (12.2 + \frac{20.3^* \sigma'_{v^{0}}}{100}))^{0.44} * 180 / \pi$
Shioi and Fukui (1954)	General case	$\phi' = 20 + 0.45^* N_{70}$
Shioi and Fukui (1954)	For roads and bridges	$\phi' = 15 + (18^* N_{70})^{0.5}$
Shioi and Fukui (1954)	For buildings	$\phi' = 27 + 0.36^* N_{70}$
Terzaghi, Peck and Mesri (1996)	Fine-grained sands	$\phi' = 20 + N_{60}/3$
Terzaghi, Peck and Mesri (1996)	Coarse-grained sands	$\phi' = 20 + N_{60}/4$

4.2.3. Elastic Modulus (Es)

Reference	Note	Formula
Webb (1969)	Sand	$E_s(MPa) = 0.1072517801^*5(N+15)$
Webb (1969)	Clayey sand	$E_{\rm x}(MPa) = 0.1072517801^{*}10/3(N+5)$
Denver (1982)	Sand	$E_s(MPa) = 7^*(N)^{0.5}$
Wrench & Nowatzki (1986)	Partially saturated gravels	$E_{\rm x}(MPa) = 2.22 N^{0.0300}$
Bowles (1988)	Gravelly sand and gravel	$E_s(MPa) = 1.2(N+6)$
Bowles (1988)	Clayey sand	$E_{\rm x}(MPa) = 0.32(N+15)$
Bowles (1988)	Silty sand	$E_s(MPa) = 0.3(N+6)$
Jones & Rust (1989)	Residual	$E_{\rm s}(MPa) = 1.6N$
Papadopoulos (1992)	Sand	$E_s(MPa) = 7.5 \pm 0.8N$
Decourt (1994)	Saprolite	$E_s(MPa) = 2.5N_{50}$
AASHTO (1996)	Clean fine to medium sands and slightly silty sands	$E_s(MPa) = 700/1000N1_{60}$
AASHTO (1996)	Coarse sands and sands with little gravel	$E_{\rm s}(MPa) = 1000/1000 N 1_{50}$
AASHTO (1996)	Sandy gravels	$E_s(MPa) = 1200/1000N1_{60}$
Chaplin (1963)	Sand	$E_{\rm x}(MPa) = (44N_{60})^{0.55} \cdot 95.76/1000$
D'Appolonia et al (1970)	Sand (normally consolidated)	$E_s(MPa) = (220 + 11N1_{60})^* 100/1000$
Farrent (1963)		$E_{s}(MPa) = (7.5^{*}8/9^{*}N_{s0}^{*}95.76)/1000$
Kulhawy and Mayne (1990)	Sands with fines	$E_s(MPa) = (5*100*N_{60})/1000$
Kulhawy and Mayne (1990)	Clean sands (normally consolidated)	$E_s(MPa) = (10^*100^*N_{s0})/1000$
Kulhawy and Mayne (1990)	Clean sands (over consolidated)	$E_s(MPa) = (15^*100^*N_{60})/1000$
Mezenbach (1961)	Fine-grained sand (above water level)	$E_s(MPa) = 100(52 + 3.3N_{sin})/1000$
Mezenbach (1961)	Fine-grained sand (below water level)	$E_s(MPa) = 100(71 + 4.9N_{60})/1000$
Mezenbach (1961)	Sand (medium)	$E_{\rm s}(MPa) = 100(39 + 4.5N_{\rm km})/1000$
Mezenbach (1961)	Coarse-grained sand	$E_s(MPa) = 100(38 + 10.5N_{60})/1000$
Mezenbach (1961)	Sand and gravel	$E_s(MPa) = 100(43 + 11.8N_{60})/1000$
Mezenbach (1961)	Silty sand	$E_s(MPa) = 100(21 + 5.3N_{60})/1000$
Schultze and Muhs (1967)	Sand	$\xi_s(MPa) = 0.1^* (0.00231839 (N1_{60})^3 - 0.489236 (N1_{60})^2 + 34.619 (N1_{60}) + 2.78904)$

4.2.4. Shear Wave Velocity (Vs)

Reference	Note	Formula			
Imai (1977)	Alluvial sand	$Vs(m/s) = 80.6(N)^{10.11}$			
Imai (1977)	Dilluvial sand	$V_{S}(n/3) = 57.20k_{1}^{(1,10)}$			
Imai (1977)	All	$Vs(m/s) = 91(N)^{0.247}$			
Schmertmann (1978)	Fine sands above water table	$V_{0}(m/s) = 45(N)$			
Ohta & Goto (1978)	All	$Vs(m/s) = 95(N)^{0.541}$			
Ohta & Goto (1978)	Sands	$F_{\mathcal{T}}(\alpha/\beta) = B(0/\delta)^{1/2M}$			
Ohta & Goto (1978)	Gravels	$Vs(m/s) = 75.3(N)^{5.51}$			
Ohta & Goto (1978)	Clays	$F_{\mathcal{T}}(w/w) = \pi T(\mathcal{R})^{1/2/3}$			
Imai & Tonouchi (1982)	All	$Vs(m/s) = 97(N)^{55^{-6}}$			
Seed et al. (1983)	Sands	$\operatorname{Fs}_{2}(a/s) = hb(N)^{0.5}$			
Sykora & Stokoe (1983)	Granular	$Vs(m/s) = 107(N)^{3.24}$			
Seed et al. (1985)	Sands & silty sands	$\mathbb{P}_{S}[n/s] = 61(91)^{0.5}$			
Towhata & Ronteix (1988)	Alluvial sand	$V_{N}(m/s) = 80(N)^{0.03}$			
Jamiolkowski et al. (1988)	Holocene fine sand	$V_{2}(m/s) = 55.5(500)^{0.15} \langle Z \rangle^{0.16} f_{12} f_{23} \langle f_{33} = 10 \langle f_{33} = 1.09 \rangle$			
Jamiolkowski et al. (1988)	Holocene Medium sand	$Vs(m/s) = 53.5(N60)^{0.17}(Z)^{10.12}f_{m}f_{C'}(f_{m} = 1)(f_{C} = 1.07)$			
Jamiolkowski et al. (1988)	Holocene coarse sand	$V_{2}(m/n) = V_{2} S(5(00)^{(12)} (2)^{(12)} f_{1} f_{2} (f_{2} - 1) (f_{2} - 1.14)$			
Jamiolkowski et al. (1988)	Holocene sand and gravel	$Vs(m/s) = 53.5(N60)^{0.17}(Z)^{1170}f_{\omega}f_{\omega}r_{U}(f_{\omega} = 1)(f_{\omega} = 1.45)$			
Jamiolkowski et al. (1988)	Holocene gravel	$V_{2}(y_{1}/y_{2}) = 55.5(560)^{0.15} (Z)^{0.154} f_{12} f_{22} (F_{2} = 1)(f_{2} = 1.45)$			
Jamiolkowski et al. (1988)	Pleistocene fine sand	$Vs(m/s) = 53.5(N60)^{0.13}(Z)^{0.193}f_{w}f_{w}(f_{w} = 1.3)(f_{\psi} = 1.09)$			
Jamiolkowski et al. (1988)	Pleistocene Medium sand	$V_{2}(y_{1}y_{2}) = 55.5(3940)^{-17} (T_{1}^{(1)})^{-17} (T_{1}^{(1)})^{-1} (T_{1}^{(1)$			
Jamiołkowski et al. (1988)	Pleistocene cene coarse sand	$Vs(m/s) = 53.5(N60)^{0.17} (Z)^{1.193} f_{10} f_{10} (f_{10} = 1.3)(f_{10} = 1.14)$			
Jamiołkowski et al. (1988)		$V_{clar}(r) = 53.5(360)^{-17} (T_{clar}^{(1)} T_{clar}^{(2)} (T_{clar}^{(2)} T_{clar}^{(2)} (T_{clar}^{(2)} T_{clar}^{(2)} (T_{clar}^{(2)} T_{clar}^{(2)} (T_{clar}^{(2)} T_{clar}^{(2)} (T_{clar}^{(2)} (T_{clar}^{(2$			
Jamiolkowski et al. (1988)	Pleistocene sand and gravel	$Vs(m/s) = 53.5(N60)^{5.17}(Z)^{5.193}f_{\mu}f_{e^{\mu}}(f_{\mu} = 1.3)(f_{\mu} = 1.45)$			
Jamiolkowski et al. (1966)	Pleistocene gravel				
Yoshida et al. (1988)	Fine sand Effective stress in kPa	$Fu[w]w] = \left(\Phi[S_{11}] \right)^{1/2} \left(u_{100}^{(m-1)} \right)^{m-1}$			
	Gravel content 25%	$V_S(m/s) = 5h(N_{1})^{0.25} (\sigma'_{10})^{-04}$			
Yoshida et al. (1988)	Effective stress in kPa	$(\alpha f(\alpha \lambda \alpha)) = \alpha \alpha f(\alpha \lambda \lambda - \beta \alpha \lambda 0)$			
Yoshida et al. (1988)	Gravel content 35%	$F_2(m/r) = 55[N_1]^{1/27}(m_{100}^*)^{-1/1}$			
Toshida et al. (1900)	Effective stress in kPa				
Yoshida et al. (1988)	All	$V_{S}(m/s) = 55(N_{1})^{0.23}(n'_{10})^{-0.14}$			
	Effective stress in kPa				
Lee (1992)	Sandy soils	$V_{ij}(a_i;a_j) = 104 \mathcal{I}(a_j) ^{1-2\delta}$			
Kalteziotis et al. (1992)	Noncohesive Greece	$Vs(m/s) = 49.1(8)^{(8/3)}$			
Veijayaratnam et al. (1993)	Misc. soils from Singapore	$F_{S(m)}(r) = -30(K)^{-2m}$ $F_{S(m)}(r) = -322(K) - 352K$			
Raptakis et al. (1994)	Loose sands and silts	$V_S(m/s) = 123(N_{n0})^{5/266}$			
Raptakis et al. (1994)	Medium and dense Sands	$F_{N}(m_{1}^{(n)}) = 1004[W_{m_{1}}]^{0.022}$			
Raptakis et al. (1994)	Gravelly soil mixtures	$V_S(m/s) = 192(N_{n0})^{5/101}$			
Athanasopoulos (1994)	Gravelly soils	$V_{c}(a,b) = 65.5 (20)^{100}$			
Akino & Sahara (1994)	Sand and rock	$Vs(m/s) = 55.6(N)^{0.3}$			
Pitilakis et al. (1998)	Silts and sands	$F_{2}(a/s) = 1/3 \langle W_{a,0} \rangle^{-3/2}$ (12)			
Rollins et al. (1998)	Holocene gravels	$V_{S}(m/s) = 63(N_{BS})^{0.03}$			
Rollins et al. (1998)	Pleistocene gravels	$Fr(wgv) = 132(W_{ge})^{0.00}$			
Rollins et al. (1998)	Holocene gravels Effective stress in kPa	$Vs(m/s) = 53(M_{n0})^{0.19}(\sigma_{V2}^*)^{0.29}$			
Rollins et al. (1998)	Pleistocene gravels Effective stress in kPa	$Fs[s_2s_2s_3] = (1.5)[s_{s_2s_3}]^{1/3}[s_{s_2s_3}]^{1/3}$			
Hasancebi & Ulusay (2007)	Sands	$V_{\rm S}(m/s) = 131 (N_{\rm ph})^{2.205}$			
Dikmen (2009)	Sands	$V_{2}(n/4) = 73(0)^{-100}$			
Uma Maheswari et al. (2010)	Sands	$Vs(m/s) = 100.5(N)^{5763}$			
Esfehanizadeh et al. (2015)	Sands	$Fs(np) = 0.020(9)^{1.00}$			
Fatehnia et al. (2015)	Sands	$Vs(m/s) = 77.1(N)^{3333}$			
Kirar et al. (2016)	Sandy	$F_2(w_i w) = 100.5(W_i^{(12)0})$			
Gautam (2017)	Sand	$Vs(m/s) = 79.7(N)^{3.772}$			
		N. C. N. N.			

4.2.5. Shear Modulus (Gmax)

Reference	Note	Formula
Ohsaki & Iwasaki (1973)	All	$Gmax(MPa) = 11.5(N)^{0.78}$
Ohsaki & Iwasaki (1973)	Cohesionless	$Gmax(MPa) = 6.1(N)^{0.94}$
lmai (1977)	Alluvial sand	$Gmax(MPa) = 9.4(N)^{0.715}$
lmai (1977)	Diluvial sand	$Gmax(MPa) = 17(N)^{0.650}$
lmai (1977)	All	$Gmax(MPa) = 12(N)^{0.737}$
Imai & Tonouchi (1982)	All	$Gmax(MPa) = 14(N)^{0.68}$
Seed et al. (1983)	Sands	Gmax(MPa) = 6.2(N)
Stroud (1989)	Data from Imai & Tonouchi(1982)	
Decourt (1994)	Lateritic soils	$Gmax(MPa) = 47.5(N)^{0.72}$
Hirayama (1994)	Misc. soils	Gmax(MPa) = 5(N)
Pinto & Abramento (1997)	Gneissic residual soil	$Gmax(MPa) = 62.8(N)^{0.30}$
Barros & Pinto (1997)	Lateritic soils	$Gmax(MPa) = 55.2(N)^{0.365}$
Barros & Pinto (1997)	Saprolitic soils	Gmax(MPa) = 56 + 2.3(N)
Barros & Pinto (1997)		$Gmax(MPa) = 43.8(N)^{0.419}$
Barros & Pinto (1997)		Gmax(MPa) = 94 + 2.3(N)
Viana da Fonseca et al. (1998)	Granitic saprolite	$Gmax(MPa) = 98 + 0.42(N_{60})$
Viana da Fonseca et al. (1998)		$Gmax(MPa) = 57(N)^{0.20}$
Anbazhagan & Sitharam (2010)	Mixed soils	$Gmax(MPa) = 24.3(N)^{0.55}$
Anbazhagan & Sitharam (2010)		$Gmax(MPa) = 29.2(N_1)_{60}^{0.57}$
Anbazhagan et al. (2012)	All soils	$Gmax(MPa) = 15.1(N_1)_{60}^{6.74}$

4.3. Fine grained soils Includes:

- Undrained Shear Strength (su)
 Unconfined Compressive Strength (qu)
 Pressuremeter Modulus (Ep)
 Elastic Modulus (Vs)
 Shear Modulus (Gmax)

4.3.1. Undrained Shear Strength (su)

Reference	Note	Formula
Hara et al. (1974)	Japanese cohesive soils	$Su(kPa) = 29(N)^{0.72}$
Reese et al. (1976)	Stiff clays in Houston	$Su(kPa) = (N/15)^*95.76$
Tavares (1988)	Guabirotuba clay	Su(kPa) = 7N, N > 10andN < 20
Tavares (1988)	Guabirotuba clay	Su(kPa) = 6N, N > 20 and N < 30
Tavares (1988)	Guabirotuba clay	Su(kPa) = 5N, N > 30 and N < 40
Ajayi & Balogun (1988)	Tropical soil	Su(kPa) = 1.39N + 74.2
Decourt (1989)	Sao paulo Over-consolidated clay	
Decourt (1989)	Sao paulo Over-consolidated clay	
Nevels & Laguros (1993)	Clay and soft shale	Su(kPa) = (0.059*N + 0.2)*107.25
Sivrikaya & Togrol (2006)	Clays – Turkey (CH)	$Su(kPa) = 7.8N_{60}$
Sivrikaya & Togrol (2006)	Clays – Turkey (CL)	$Su(kPa) = 5.35N_{60}$
Nassaji & Kalantari (2011)	Iran clay	$Su(kPa) = 2.1N_{60} + 17.6$
Cangir & Dipova (2017)	Silty clays – Turkey	$Su(kPa) = 6.932N_{70}$
Balachandran et al. (2017)	Stiff glacial till in Canada	$Su(kPa) = 8.32N_{60}$
White et al. (2019)	London Clay	Su(kPa) = 5.7N

4.3.2. Unconfined Compressive Strength (qu)

Reference	Note	Formula
Terzaghi & Peck (1967)	Fine-grained	$q_u(kPa) = 12.5N$
Golder (1961)	Clay	$q_u(kPa) = (N/8)^*107.25$
Sanglerat (1972)	Clay	$q_u(kPa) = 25N$
Sanglerat (1972)	Silty clay	$q_u(kPa) = 20N$
Sowers (1979)	Highly plastic clay	$q_u(kPa) = 25N$
Sowers (1979)	Medium plastic clay	$q_u(kPa) = 15N$
Sowers (1979)	Low plasticity clay	$q_u(kPa) = 7.5N$
Nixon (1982)	Clay	$q_u(kPa) = 24N$
Sarac & Popovic (1982)	Clay	$q_u(kPa) = 62.5(N - 3.4)$
Sambhandharaksa & Pitupakorn (1985)	CH Bangkok clay	$q_u(kPa) = (1.37N)^*9.81$
Sambhandharaksa & Pitupakorn (1985)	CL Bangkok clay	$q_u(kPa) = (1.04N)^{*9.81}$
Behpoor & Ghahramani (1989)	CL and CL-ML	$q_u(kPa) = 15N$
Kulhawy & Mayne (1990)	Fine-grained	$q_u(kPa) = 58N^{0.72}$
Serajuddin & Chowdhury (1996)	Bangladesh clays (LL<=35)	$q_u(kPa) = 14.3N$
Serajuddin & Chowdhury (1996)	Bangladesh clays (36 <ll<50)< td=""><td>$q_u(kPa) = 16.9N$</td></ll<50)<>	$q_u(kPa) = 16.9N$
Serajuddin & Chowdhury (1996)	Bangladesh clays (LL>50)	$q_u(kPa) = 17.8N$
Sivrikaya & Togrol (2002)	СН	$q_u(kPa) = 13.6N_{60}$
Sivrikaya & Togrol (2002)	CL	$q_u(kPa) = 9.8N_{60}$
Sivrikaya & Togrol (2002)	Fine-grained	$q_u(kPa) = 8.6N_{60}$

4.3.3. Pressuremeter Modulus (Ep)

Reference	Note	Formula
Nayak (1979)	Clay	$E_p(kg/cm2) = 7.7N$
Ohya et al. (1982)	Clayey soil	$E_p(kg/cm2) = 15N$
Jones & Rust (1989)	Residual soil	$E_p(kg/cm2) = (1.6N)^*10.197$
Yagiz et al. (2008)	Sandy silty clay	$E_p(kg/cm2) = (388.7N + 4554)^* 0.010197$
Bozbey & Togrol (2010)	Clayey soils – Istanbul	$E_p(kg/cm2) = (1.61(N_{60})^{0.71})^*10.197$
Kayabasi (2012)	Clayey soils – Turkey	$E_p(kg/cm2) = (0.285(N_{60})^{1.4})^*10.197$
Agan & Algin (2014)	Clayey soils – Turkey	$E_p(kg/cm2) = (2.22 + 0.0029(N_{60})^{2.5})^* 10.197$

4.3.4. Elastic Modulus (Vs)

Reference	Note	Formula
Jinan (1985)	Shanghai	$V_s(m/s) = 121(N + 0.27)^{0.22}$
Lee (1992)	Taipei basin (D = depth in meters)	
Kalteziotis et al. (1992)	Cohesive Greece	$V_s(m/s) = 76.5(N)^{0.445}$
Pitilakis et al. (1999)	Silts	$V_s(m/s) = 145(N)^{0.179}$
Pitilakis et al. (1999)	Clays	$V_s(m/s) = 132(N)^{0.271}$
Jafari et al. (2002)	Silts	$V_s(m/s) = 22(N)^{0.770}$
Jafari et al. (2002)	Clays	$V_s(m/s) = 27(N)^{0.730}$
Hasancebi & Ulusay (2007)	Clays	$V_s(m/s) = 107.69(N_{60})^{0.237}$
Dikmen (2009)	Clay	$V_s(m/s) = 44(N)^{0.480}$
Dikmen (2009)	Silt	$V_s(m/s) = 60(N)^{0.360}$
Uma Maheswari et al. (2010)	Clay	$V_s(m/s) = 89.3(N)^{0.358}$
Tsiambaos & Sabatakakis (2011)	Clay	$V_s(m/s) = 112.2(N_{60})^{0.324}$
Tsiambaos & Sabatakakis (2011)	Silt	$V_s(m/s) = 88.8(N_{60})^{0.370}$
Fatehnia et al. (2015)	Clay	$V_s(m/s) = 77.1(N)^{0.353}$
Kirar et al. (2016)	Clay	$V_s(m/s) = 77.1(N)^{0.355}$

4.3.5. Shear Modulus (Gmax)

Reference	Note	Formula
Ohsaki & Iwasaki (1973)	Clay	$G_{max}(MPa) = 14(N)^{0.722}$
Hara et al. (1974)	Clay	$G_{max}(MPa) = 15.8(N)^{0.668}$
Ohba and Toriumi (1970)	Alluvial sand and clay	$G_{max}(MPa) = 13.73(N)^{0.71}$
lmai and Tonouchi (1982)	Diluvial clay	$G_{max}(MPa) = 24.61(N)^{0.355}$
lmai and Tonouchi (1982)	Alluvial clay	$G_{max}(MPa) = 17.26(N)^{0.607}$

5. Content

Includes:

- <u>Data Entry</u>
- <u>Toolbar</u>
- <u>Correlated Results</u>
 <u>Correlation with depth</u>
- <u>Report</u>

5.1. Data Entry

All data entry in Dartis SPT is performed in Input tab.

)	Open Save		License	<mark>)</mark> Manager	U Help						
out		ct Info		Soil Layer	s				 1 	x	SPT Blow Counts Correction Factors (0.14)
ations		mple project 3456 mple location		Thicknes (m)	s Unit We (kN/m3)		Soil Type	OCR	Uniformity (Cu)	Del	(BH1) (BH1) 0 20 40 5 0.5 1 1.5 0-
	Client: Sample Client		3.00	16.50	F	Fine 🔻	1.00	1.00	x		
		holes		2.60	18.70	(Coarse 🔻	1.00	1.00	X	
	Borehole Name	inores	•	1.60	17.50	F	Fine 🔻	0.50	0.50	×	
	Borehole	lame	Del	2.00	21.00	F	Fine 🔻	1.00	1.00	×	2
	BH1	i inte	×	SPT blow	counts			 	A 🖻 🖻	×	
	BH2		×	Depth	SPT blow					~	3 11/ 1
	Select B	Borehole		(m)	counts (N)	C	Cn	N6	0 (N1)60	Del	
	BH1		*	0.30	34	0.65	1.70	22	37	x	Ê4 I
	Allowable Be	aring Capaci	ity	0.61	12	0.65	1.70	8	14	x	
	B(m) = L(m):	1.5		0.91	18	0.65	1.70	12	20	x	Depth (m)
	Settlement (mm): FS:	3		1.22	26	0.65	1.70	17	29	x	
	CDT Con	rections		1.52	23	0.70	1.70	16	27	x	
	Energy (%):	60		1.83	25	0.70	1.70	17	29	x	
	BH Diameter:		*	2.13	39	0.70	1.70	27	46	x	
	Sampler:	With Liner	*	2.44	22	0.70	1.67	15	25	x	
	Rod length above	borehole (m)	:	2.74	21	0.74	1.64	16	26	x	
	1.5 Overburden Correc	rtion:		3.05	17	0.74	1.60	13	21	x	8
	Tokimatsu and Yos		-	3.35	18	0.74	1.56	13	20	x	N 1 1
	Ot	her		3.66	20	0.74	1.53	15	23	X	9
	Apply Water Le	evel Correctio	on	3.96	19	0.74	1.49	14	21	x	SPT N SPT N60 C=Ce,Cb,Cs,Cr
	Groundwater Level	l (m):		4.27	25	0.74	1.45	19	28	X	SPT N160 Cn
	1.5			4.80	16	0.83	1.40	13	18	×	
	Please click on ana after editing input			5.00	22	0.83	1.37	18	25	×	Plot Charts 🔗 Analyze BH
	s says graph			5.60	16	0.83	1.32	13	17	x	

This data can be categorized into the following groups: Simply enter project's information in this section. This information presents in

Project Info:	reports.
Boreholes:	Type the name of the borehole and add it to the project. Select the desired borehole from the combo box. Rest of input data will be applied to the currently selected borehole.
Allowable Bearing Capacity:	This data is used for calculating <u>bearing capacity</u> of shallow footings based on shear failure or settlement criteria (based on method). Footing size and allowable footing settlement as well as safety factor against shear failure should be specified. Please notice that depth of footing (Df) is considered to be the depth (Z) selected by user on SPT table.
SPT Corrections:	 The following corrections should be applied on SPT number (N) to obtain N60 and N1(60) numbers: • Energy level: this will adjust the SPT equipment energy to standard 60% energy. This correction factor is named Ce in Dartis SPT. • Borehole diameter: size of the borehole affects the SPT blow counts. This correction factor is named Cb in Dartis SPT. • Sampling method: some SPT samplers have a liner. This will affect the SPT blow counts and its correction factor is called Cs in Dartis SPT. • Rod length: this correction factor is called Cr and depends on length of SPT rods which is approximately equal to the depth of the test. Dartis SPT Adds rod length

	above borehole (entered by user) to the total test depth when calculating Cr: If L < $4 \text{ m} \Rightarrow \text{Cr}=0.7$, If $4 \text{ m} < \text{L} < 6 \text{ m} \Rightarrow \text{Cr}=0.85$, If $6 \text{ m} < \text{L} < 10 \text{ m} \Rightarrow \text{Cr}=0.95$, If L > $10 \text{ m} \Rightarrow \text{Cr}=1.0$ • Overburden stress: this corrections is usually called as "depth correction factor" or Cn and depends on overburden stress due to soil, at the test depth. Please choose your favorite method for each correction factor. The following formula is used to calculate the correction factors at each depth:	
	C=Ce.Cb.Cs.Cr N60=C.N N1(60)=Cn.N60 All the above-mentioned factors as well as N60 and N1(60) are plotted versus depth and presented on screen.	
Other:	The groundwater level affects the calculation of effective overburden stress (σ 'v) used in the correlations. In addition, user can choose to apply the water level correction on SPT blow counts, as proposed by Terzaghi. This correction is recommended for N \geq 15 in silty sands:	
Soil Layers:	Ncor=15+0.5(N60-15) This data is used to calculate the effective and total overburden stress at each depth where correlations are required. Please pick the soil grain size for each layer from the drop down list (Coarse / Fine). This is used by Dartis SPT to filter correlations based on grain size. Some SPT correlations depend on OCR and Cu of the soil. These parameters should be specified for each soil layer. This data can be entered manually or maybe imported from Excel.	
SPT data table:	In this table please enter raw data gathered from SPT test. The first two columns of this table include depth and SPT blow counts (N) and the other columns are automatically calculated during data entry. When this data is entered, Click on 'Plot Charts' to update and present both SPT blow counts and correction factors along depth of borehole. This data can be entered manually or maybe imported from Excel.	

Note: Never enter zero for a SPT test depth; it may lead to calculation errors. This is due to dependency of most Cn methods to σv which will be zero at Z=0.

Adding row to Tables

For adding a new row to a table, simply press 🔊 button on top-right side of the table or right click on table header and choose 'New Row' between options.

Clearing Tables

For clearing all data entered in a table, simply press subtraction button on top-right side of the table or right click on table header and choose 'Clear Table' between options.

SPT Graph

Once you enter SPT versus depth data, and press 'Plot Charts' button at the bottom-right corner of the screen, SPT graph is updated and un-corrected as well as corrected SPT numbers are plotted versus depth. Another graph shows the variation of SPT correction factors against depth. Right Click on each graph to print it. Analyzing a borehole

When data entry is finished for the selected borehole, simply click on the 'Analyze borehole' button. This will calculate correlations and then you can choose 'Correlations' then 'Equations' Tab in which by selecting the required 'Borehole', 'Depth' and 'Parameter to correlate'; correlations are provided for this depth of selected borehole.

Input	Open Save Image: Save License N Equations Correlations with depth Correlations with depth Correlations with depth	Manager Help	
Correlations	Borehole: Depth (m):	Parameter to correlate:	Tokimatsu and Yoshimi (1983)
	BH1 • 0.61	Allowable Bearing Capacity (kPa)	Type: Fine, Effective stress= 10.06 kPa, N= 12, N60= 8, N1(60)= 14
	Reference Teng (1969)	Value Note 193.64 Based on shear failure criteria (FS = 3 N = Average corrected spt blow cour	
		(Gibbz and Holtz 1948) to 1B depth b footing B(m) = 1.50 N = 24 Rw = 1.00 R'w = 0.80	below
	Meyerhof Method	398.93 Based on shear failure criteria (FS = 3 B(m) = 1.50 N = Average uncorrected spt blow co 1.5B depth below footing N = 23 CW1 = 0.70 CW2 = 1.00	ount to
	General Terzaghi formula	266.64 Based on shear failure criteria (FS = 3 B(m) = 1.50 Friction angle (Hatanaka and Uchida 35.40 Nq (Bowels 1986) = 34.98 Nγ (Hansen 1970) = 36.22	
	Terzaghi and Peck (1948)	265.85 Based on allowable settlement (25.00 B(m) = 1.50 N = Average uncorrected spt blow co 1B depth below footing N = 21 Cw = 1.00 Cd = 0.90	$(B \le 1.22) \Rightarrow Qa(kPa) = 0.4713 \frac{1.22}{C_w C_d}, (B > 1.22) \Rightarrow Qa(kPa) = 0$
	Select All Select None Count:	0 Min: Max:	Average: St Deviation: Variance:
			Show Report

5.2. Toolbar

1.Creates a new project: by clicking on 'New' button, a dialogue will open. Choose the location where you want the project to be saved. Files are saved with *.DSpt extension and the complete file path is shown at the bottom of the page.

2.Opens a previously created project file: by clicking on Open button, an open dialogue will show up. Choose the save file on your local hard. Files are stored with *.DSpt extension.

3.Saves currently open project: saves current project's information on currently open save file. The save file path is shown at the bottom of the page.

4.Opens report

5.0pens License Manager window.

6.Opens Help

5.3. Correlated results

When data entry in Dartis SPT is completed, press 'Analyze borehole' button. In Correlations and then Equations tab results are available. Dartis SPT uses more than 200 correlations to prepare these results. For each soil parameter in depth of a selected borehole (e.g. "Allowable bearing capacity"), all available correlations are summarized in a table describing the reference, parameter value, Equation, and Notes regarding each correlation used. The following screen shot shows the correlation table:

nput relations	Equations Correlations with depth			
	Borehole: Depth (m):			tsu and Yoshimi (1983)
	BH1 = 3.05	▼ Allowa	ble Bearing Capacity (kPa) Type: Co	oarse, Effective stress= 35.24 kPa, N= 17, N60= 13, N1(60)= 21
	Reference	Value	Note	Equation
	General Terzaghi formula	860.70	Based on shear failure criteria (FS = 3) B(m) = 1.50 Friction angle (Hatanaka and Uchida 1996) = 39.09 Nq (Bowels 1986) = 56.61 Nγ (Hansen 1970) = 67.75	$Qa(kPa) = (\bar{q}N_q + 0.5B\gamma N_\gamma)/FS$
	Terzaghi and Peck (1948)	303.27	Based on allowable settlement (25.00mm) B(m) = 1.50 N = Average uncorrected spt blow count to 18 depth below footing $N = 20Cw = 1.00Cd = 0.75$	$(B \le 1.22) \Rightarrow Qa(kPa) = 0.4713 \frac{NS_e}{C_w C_d}, (B > 1.22) \Rightarrow Qa(kPa) = 0$
	✔ Modified Meyerhof (1965)	604.97	Based on allowable settlement (25.00mm) B(m) = 1.50 N = Average uncorrected spt blow count to 1B depth below footing N = 20 Cd = 1.33	$(B \le 1.22) \Rightarrow Qa(kPa) = 0.9426NS_cC_d, (B > 1.22) \Rightarrow Qa(kPa) = 0$
	Anagnostopoulos et al. (1991)	674.41	Based on allowable settlement (25.00mm) B(m) = 1.50 N = Average uncorrected spt blow count to 1B depth below footing $N = 20$	$Qa(kPa) = \left(\frac{SN^{1.2}}{2.37B^{0.7}}\right)^{1/0.87}$
	Burland and Burbidge (1985)	944.05	Based on allowable settlement (25.00mm) B(m) = 1.50 $N = Average corrected spt blow count to 1.4^{R}R^{2}(R/R) \triangle 0.75 depth below footing$	$Qa(kPa) = \frac{SN^{1.4}}{1.706B^{0.7}}$
	Select All Select None Count	3	Min: 604.97 Max: 860.70 Ave	rage: 713.36 St Deviation: 132.24 Variance: 17,486.64

Sorting

By clicking on the 'Value' header, rows are sorted numerically. By clicking on the 'Reference' or 'Note' headers, rows are sorted alphabetically.

Correlated results Report

Each method may be turned on/off by using the check box in the first column and will be added/removed from the designed report for this tab. Statistical variables are calculated for selected methods. The following screen shots show a sample Report regarding this page:

Project:	Job No. :	Location:	Client:
Sample project	123456	Sample location	Sample Client
Borehole:	Depth (m):	Parameter:	Overburden correction:

Reference	Note	Ν	N60	(N1)60	Effective stress (kPa)		Value	Formula
Teng (1969)	Based on shear failure criteria (FS = 3) N = Average corrected spt blow count (Gibbz and Holtz 1948) to 1B depth below footing B(m) = 1.50 N = 28 Rw = 0.75 R'w = 0.50	17	13	21	35.24	3.05		$Qa(kPa) = 0.1570464(2N^2BR_w + 6(100 + N^2)D_f R'_w)/FS$
Meyerhof Method	Based on shear failure criteria (FS = 3) B(m) = 1.50 N = Average uncorrected spt blow count to 1.5B depth below footing N = 20 CW1 = 0.50 CW2 = 0.75	17	13	21	35.24	3.05		$Qa(kPa) = 314.0928(NB/10(C_{w1} + C_{w2}D_f/B))/FS$
General Terzaghi formula	Based on shear failure criteria (FS = 3) B(m) = 1.50 Friction angle (Hatanaka and Uchida 1996) = 39.09 Nq (Bowels 1986) = 56.61 Nγ (Hansen 1970) = 67.75	17	13	21	35.24	3.05	860.6958	$Qa(kPa) = (\bar{q}N_q + 0.5B\gamma N_\gamma)/FS$
Anagnostopoulos et al. (1991)	Based on allowable settlement (25.00mm) B(m) = 1.50 N = Average uncorrected spt blow count to 1B depth below footing N = 20	17	13	21	35.24	3.05	674.4098	$Qa(kPa) = \left(\frac{SN^{1.2}}{2.37B^{0.7}}\right)$
Burland and Burbidge (1985)	Based on allowable settlement (25.00mm) B(m) = 1.50 N = Average corrected spt blow count to $1.4*Br*(B/Br)^{0.75}$ depth below footing Br = 0.3m N = 24	17	13	21	35.24	3.05	944.0453	$Qa(kPa) = \frac{SN^{1.4}}{1.706B^{0.7}}$
Count:	Average:				Min:	Max:		Variance:
5	725.57				515.27	944.05		30,331.65

Exporting Formats In report viewer choose exporting format by clicking on Save button:

	Save *	1										
	Document File.											
PDF	Microsoft XPS File											
HPS				Job No	Job No. :		Locati		ion:		Client:	
0 O	Microsoft Powe	erPoint File	oject	123456	5	Sampl			le location		Sample Client	
	HTML File			Depth	(m): Paramete					Over	burden correction:	
XLS	Microsoft Excel	File		-	(11).				ving Consoity (kDa)			
OpenDocum		t Calc File		3.05	Allo		owable Bearing Capac		ту (кРа)	IOKI	matsu and Yoshimi (1983)	
TRT	Text File											
RTF	Rich Text File		erence	Note	N	N60	(N1)60	Effective	Depth (m)	Value	Formula	
00C	Microsoft Word	d File						stress (kPa)				
000 *	OpenDocument Writer File		<u>.</u> (9)	failure criteria (FS =	17	13	21	35.24	3.05	515.2672	$Qa(kPa) = 0.1570464(2N^2BR_w + 6(100 + N^2)D_fR'_w)/FS$	
DAT	Data File						21	00.24				
IMC 基°	Image File			3) N = Average								
				corrected spt blow count (Gibbz and Holtz 1948) to 1B depth below footing B(m) = 1.50 N = 28 Rw = 0.75 Rw = 0.50								
		Meyerho	of Method	Based on shear failure criteria (FS = 3) B(m) = 1.50 N = Average uncorrected spt blow count to 1.5B depth below footing N = 20 CW1 = 0.50 CW2 = 0.75	17	13	21	35.24	3.05	633.4205	$Qa(kPu) = 314.0928(NB/10(C_{w1} + C_{w2}D_f/B))/FS$	
		General formula	Terzaghi	Based on shear failure criteria (FS = 3)	17	13	21	35.24	3.05	860.6958	$Qa(kPa) = (\bar{q}N_q + 0.5B\gamma N_\gamma)/FS$	

5.4. Correlation with depth

This feature is designed to plot the variation of a soil parameter in depth of a borehole based on SPT blow counts, and is accessible from Correlations \rightarrow Correlations with depth. Follow these steps to obtain the correlation in depth of borehole:

1.Select the desired soil parameter (Elastic Modulus is selected in the following screen shot)

2.Select the correlations from the list (Three of the selected methods can be seen in the screen shot)

3. Click on 'Plot Selected Methods' button

4.If necessary, remove or include more methods from the list and repeat step 3

Note : By choosing a Fine soil parameter, the graph will plot along fine soil layers. Soil grain size at a depth is obtained from soil layers input.

Printing Chart

Either click on 'Print Chart' button at bottom right side of page or right click on the chart and choose 'Print Chart' between options. A chart print dialogue will open. Click on 'Print'.

Correlations with depth Report

Each method may be turned on/off by using the check box in the first column and will be added/removed from the designed report for this tab.

From the combo box choose required report (Detailed Report / Standard Report / Only data table report) and click on 'Show Report'.

5.5. Report

button on toolbar, report viewer opens. Simply select the Borehole and then the required By clicking on Depth. Click on Submit button. This will generate the report. Report can be Printed or be saved in desired format (PDF, Excel, Word, Image ...).

System Requirements

Min. 1024×768 Screen Resolution Windows 7, 8, 8.1 and 10 (up-to-date) Microsoft .Net 4.7.2 100 MB of Disk Space